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SUMMARY

We propose a way to include small-scale inhomogeneities
and sharp boundaries in high-order acoustic finite di�er-
ence schemes. The method is based on representing the
inhomogeneities as secondary sources defined on dense
auxiliary grids. Interaction of the secondary sources
with the finite di�erence scheme is performed by inter-
polation. We observe good agreement of the method’s
results with precise solutions for simple models in 2D.

INTRODUCTION

The finite di�erence (FD) method (e.g., Virieux, 1986) is
likely the most popular method to numerically solve the
problem of seismic wave propagation. Development of
high-order FD schemes (Holberg, 1987) has made it pos-
sible to define the medium parameters on sparse grids
with a few grid points per shortest wavelength, which
has significantly eased the memory requirements and
shortened the computation time. However, small-scale
structures and sharp interfaces are poorly resolved by
such grids.

Non-uniform grids allow to have higher spatial resolu-
tion in chosen domains. Mikumo et al. (1987) used con-
tinuous non-uniform grids to reduce the grid spacing in
the vicinity of fault planes. Kessler and Koslo� (1991)
employed discontinuous non-uniform grids to include
boreholes in the wave field computation. Implementa-
tion of such an algorithm is not straightforward, and
discretization of a model on a non-uniform grid may be
tedious. For stability, the time increment in the meth-
ods is defined by the smallest grid spacing, which leads
to long run-times.

There are solutions that leave the FD grid spacing un-
touched and hence do not degrade the memory and time
advantages of the high-order FD schemes. However,
they are limited to specific problems and geometries.
Carcione (1996) uses explicit boundary conditions at
the crack location; van Baren et al. (2001) approximate
small cracks by secondary sources; Coates and Schoen-
berg (1995) consider cells containing faults as equivalent
homogeneous media; in a similar manner, Muir et al.
(1992) treat each grid cell containing an interface as an
equivalent homogeneous block. Note that the equivalent
media in the last two solutions are anisotropic, which re-
quires solving more complex anisotropic equations.

We suggest a simple solution to include arbitrary small-
scale structures in the FD scheme while retaining its

sparse grid. We split the medium into two parts: a
background medium with large-scale structures speci-
fied on a sparse FD grid and a perturbed medium with
small-scale inhomogeneities defined on separate auxil-
iary dense grids. We propagate the wave field in the
background medium using FD. At each time-step, we
update the field with the perturbed medium’s response
at the auxiliary points. The wave field is extracted at
the auxiliary points and injected back in the FD grid
with the help of interpolation. Practically, the small-
scale inhomogeneities are represented by a number of
secondary sources whose strength at a given time step
is defined by the structure’s properties and the wave
field at the previous step.

In the work, we outline the theory of the method and
benchmark it against precise solutions for simple cases.
We consider acoustic 2D media, though the technique
can be readily extended to 3D elastic case.

THEORY

The system of equations governing the acoustic wave
propagation is

v̇i = 1
fl

ˆip + 1
fl

fi

ṗ = Ÿˆivi + ṡ

, (1)

where fl is the density, Ÿ is the bulk modulus, vi is ith
component of the displacement velocity, p is the pres-
sure, fi and s are the displacement velocity source and
the pressure source, respectively. Einstein’s summation
convention for the repeated indexes is implied. The dot
means the time derivative. Let us omit the source terms.
Suppose the actual medium can be split into a back-
ground medium with parameters Ÿ

0, fl

0 and a perturbed
medium Ÿ

1, fl

1

fl = fl

0 + fl

1

Ÿ = Ÿ

0 + Ÿ

1 (2)

By substituting (2) into (1) and rearranging the terms,
we get

v̇i = 1
fl

0 ˆip ≠ fl

1

fl

0 v̇i

ṗ = Ÿ

0
ˆivi + Ÿ

1
ˆivi

(3)

System (3) describes the full wave field propagation in
the background medium, where the last terms on the
right-hand side can be viewed as secondary sources in-
troducing the wave generated by the perturbation into
the model. Any FD algorithm can be easily modified to
handle (3). The background parameters Ÿ

0, fl

0 define
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Inhomogeneities as interpolated secondary sources in FD

the FD grid properties. Notice that (2) do not include
any restrictions on the perturbation parameters.

We define perturbations Ÿ

1, fl

1 on a dense auxiliary grid
disconnected from the FD grid. At each time step in FD,
we compute v̇i and ˆivi at the auxiliary grid points,
scale them by ≠fl

1
/fl

0 and Ÿ

1, respectively, scale the
results by the auxiliary cell volume in accordance with
the rectangle integration rule, and re-inject the fields in
the same auxiliary points.

Normally, the points do not coincide with the FD grid
nodes. We use Hicks’ interpolation (Hicks, 2002) to link
the grids. The method is based on Kaiser-windowed
sinc-functions. It provides accurate results when the
medium is homogeneous within the interpolation win-
dow, and when the source point is su�ciently distant
from the receiver point.

RESULT

First, we consider a simple problem of the acoustic wave
scattering from a circular inhomogeneity in 2D. We com-
pute the scattered field using the algorithm described
before as well as the pure FD solution with a few FD
nodes specifying the inhomogeneity. We benchmark the
results against an analytical solution (Bowman et al.,
1969). In order to extract the scattered field, we com-
pute the full wave field using (3) and subtract the back-
ground field computed in the same background model
without the secondary sources.

Fig. 1 depicts the acquisition geometry. The pressure
wave is excited by a point source o�set at 400 m from
a circular inhomogeneity’s axis. The scattered pressure
wave is recorded in a number of points evenly distributed
on a semicircle with radius 200 m around the center of
the structure. The circular inhomogeneity has radius
of 40 m and takes on 50% perturbations in the bulk
modulus and the density, i.e.

”fl = fl

1

fl

0 · 100% = 50%

”Ÿ = Ÿ

1

Ÿ

0 · 100% = 50%
, (4)

where the background medium is water with Ÿ

0=2.25 ·
109 Pa and fl

0=1000 kg/m3.

We use the second order in time and eighth order in
space staggered grid FD scheme (Virieux, 1986; Holberg,
1987). The grid spacing in both spatial dimensions is
20 m. The source wavelet is the Ricker pulse with cen-
tral frequency 10 Hz. The time step is equal to 1 ms.
We interpolate the wave fields at source, receiver and
auxiliary grid locations using Hicks’ interpolation with
a window of half-width equal to 4 nodes. Relation of
the circle to the FD grid is illustrated in Fig. 2. The
black and blue dots are the pressure and displacement
velocity FD nodes. The inhomogeneity (pink circle) is
defined on a 15◊15 nodes auxiliary grid (red points).

rs

rr

◊r2rc

source
receiver
perturbation

Figure 1: Acquisition configuration for the scattering
from a circular inhomogeneity. Circular inhomogene-
ity with radius rc=40 m (pink), point pressure source
(green) is o�set at rs=400 m from the inhomogeneity’s
axis, pressure receivers (olive) are evenly distributed on
a semicircle with rr=200 m around the perturbation.

rc�x

�y

Figure 2: Circular inhomogeneity with radius rc=40 m
(pink) is specified by an auxiliary grid (red). Pressure
(black) and displacement velocity (blue) FD nodes have
spacing �x=�y=20 m.

Fig. 3 shows the normalized scattered pressure field.
The proposed secondary source technique (red dashed
line) provides close fit to the exact analytical solution
(blue solid) almost everywhere. Observe that although
the wave field in the FD scheme is propagated in the
background medium (3), the continuous feedback from
the inhomogeneity ensures the correct phase shift. The
pure FD solution where the inhomogeneity is described
by a few grid nodes is o� both in amplitude and phase
(yellow dotted).

In the second experiment, we consider a non-isometric
body – a thin horizontal layer in a homogeneous medium.
Fig. 4 outlines the problem’s geometry. The thickness
of the layer is 80 m. It takes on 50% perturbations both
in density and bulk modulus. The FD grid step in both
spatial dimensions is 20 m, so there are only a few rows
of the FD grid points to represent the structure. In turn,
the auxiliary grid has 2.5 m vertical step and 20 m hor-
izontal step. In FD and the secondary source approach,
the model is long enough to avoid the edge e�ects and
to mimic the infinite span of the layer. All other pa-
rameters are the same as in the previous experiment.
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Inhomogeneities as interpolated secondary sources in FD

Figure 3: The normalized pressure field scattered from
the small circular inhomogeneity with rc=40 m. Com-
parison of results of the secondary source technique (red
dashed), the pure FD solution with a few grid nodes
representing the structure (yellow dotted) and the ana-
lytical solution (blue solid). 50% perturbation in bulk
modulus (left) and density (right) is applied.

◊

h=80 m

x

y

252 m

332 m

0 m
50 m source

receiver
perturbation

Figure 4: Acquisition configuration for the scattering
on a thin horizontal layer. The pressure wave is emitted
by a point source (green), reflected from the layer (pink)
and recorded in a linear receiver array (olive) at di�erent
reflection angles ◊ œ [0¶

,60¶].

We compute the reflected wave field using the secondary
source approach and the pure FD scheme, and bench-
mark them against a semi-analytical solution obtained
with the global matrix approach (Schmidt and Tango,
1986). Fig. 5 shows the normalized reflected field for
di�erent reflection angles. The direct wave is neglected.
The pure FD solution (yellow dotted) is close to the
semi-analytical one in case the bulk modulus is per-
turbed (Fig. 5, left), though there is a noticeable phase
error. In the case of density perturbation (Fig. 5, right),
the pure FD solution is much less accurate due to dis-
persion (the wavelength in the layer is small). The
secondary source solution is unconditionally better in
both cases, even though the FD parameters are exactly
the same.

Figure 5: The normalized pressure field reflected by the
thin layer with h=80 m. Comparison of results of the
secondary source technique (red dashed), the pure FD
solution with a few grid rows representing the structure
(yellow dotted) and the semi-analytical solution (blue
solid). 50% perturbation in bulk modulus (left) and
density (right) is applied.

DISCUSSION

The stability criterion for the acoustic FD scheme we
use is (Holberg, 1987)

�t <

Ô
2h

fic

, (5)

where h=�x=�y, c is the wave velocity, and �t is the
time increment. For the background medium we used
in the first experiment (Ÿ=2.25 ·109 Pa, fl=1000 kg/m3,
�x=�y=20 m) the time increment should be less than
6 ms. If we derive �t for the perturbation with the
highest velocity in the first experiment and the aux-
iliary grid spacing (Ÿ=3.375 · 109 Pa, fl=1000 kg/m3,
�x=�y=5.71 m) it should be less than 1.4 ms. In the
computations, the time step value was 1 ms, which we
expected would guarantee stability of the method. How-
ever, at late times the secondary source representation
blows out (Fig. 6). The method’s stability is yet to be
analyzed.

The interpolation method we used does not ensures cor-
rect results if there are inhomogeneities in the back-
ground medium within the interpolation window (Hicks,
2002). Generally, small-scale structures are not restricted
to homogeneous domains, and one potentially may want
to simulate their presence in the vicinity of a large-scale
boundary. The behavior of the algorithm should be
studied for this case.

The idea to represent inhomogeneities as secondary sources
is not limited to FD and can be implemented in other
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Inhomogeneities as interpolated secondary sources in FD

Figure 6: The pressure field scattered from the small cir-
cular inhomogeneity with rc=40 m and 50% perturba-
tion in bulk modulus obtained with the secondary source
technique. Observe the instability at late times.

numerical methods. The spectral element method (Ko-
matitsch and Tromp, 1999) is the best candidate since it
has its inherent interpolation within each element, and
the problem of having an interface in the vicinity of the
small inhomogeneity will not arise there.

The application of the idea to elasticity is as follows.
The system of equations governing the elastic wave prop-
agation is

v̇i = 1
fl

ˆj‡ij + 1
fl

fi

‡̇ij = ”ij⁄Á̇kk + 2µÁ̇ij + ṡij

Á̇ij = 1
2

!
ˆjvi + ˆivj

"
, (6)

where vi is the ith component of the displacement ve-
locity vector, ‡ij is the stress tensor, Áij is the strain
tensor, ”ij is the Kronecker delta, ⁄ and µ are the Lamé
parameters, fl is the density, fi and sij are the source
terms. Dot means the time derivative, and Einstein’s
summation convention is used. If we split the medium
parameters into the large-scale fl

0, ⁄

0, µ

0 and small-
scale fl

1, ⁄

1, µ

1 parts

fl = fl

0 + fl

1

⁄ = ⁄

0 + ⁄

1

µ = µ

0 + µ

1
, (7)

substitute them in (6) and rearrange the terms, we get
(the source terms are omitted)

v̇i = 1
fl

0 ˆj‡ij ≠ fl

1

fl

0 v̇i

‡̇ij = ”ij⁄

0
Á̇kk + 2µ

0
Á̇ij + ”ij⁄

1
Á̇kk + 2µ

1
Á̇ij

(8)

Again, the terms with the small-scale medium parame-
ters can be treated as secondary sources, can be defined
on dense auxiliary grids and inserted in FD with the aid
of interpolation.

CONCLUSIONS

A simple way to include small-scale inhomogeneities in
FD is presented. We define the structures as secondary
sources on dense auxiliary grids and sew them into the
finite di�erence scheme with interpolation. The aux-
iliary grid should not necessarily be rectangular, but
can be irregular, curvilinear, etc., as long as the inte-
gration weights for each secondary source are correctly
estimated. Implementation of the algorithm does not
require much e�ort, any existing FD solver for the wave
equation can be easily modified to use the idea. We
tested the algorithm in two simple 2D acoustic cases
and observed good fit with the known exact solutions.

The method has possibilities for improvement: its sta-
bility should be analyzed, di�erent interpolation strate-
gies need to be attempted. However, the principal possi-
bility to use it for small-scale structures in FD is shown.
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